Value and Clinical Application of Orthopedic Metal Artifact Reduction Algorithm in CT Scans after Orthopedic Metal Implantation
نویسندگان
چکیده
OBJECTIVE To evaluate orthopedic metal artifact reduction algorithm (O-MAR) in CT orthopedic metal artifact reduction at different tube voltages, identify an appropriate low tube voltage for clinical practice, and investigate its clinical application. MATERIALS AND METHODS The institutional ethical committee approved all the animal procedures. A stainless-steel plate and four screws were implanted into the femurs of three Japanese white rabbits. Preoperative CT was performed at 120 kVp without O-MAR reconstruction, and postoperative CT was performed at 80-140 kVp with O-MAR. Muscular CT attenuation, artifact index (AI) and signal-to-noise ratio (SNR) were compared between preoperative and postoperative images (unpaired t test), between paired O-MAR and non-O-MAR images (paired Student t test) and among different kVp settings (repeated measures ANOVA). Artifacts' severity, muscular homogeneity, visibility of inter-muscular space and definition of bony structures were subjectively evaluated and compared (Wilcoxon rank-sum test). In the clinical study, 20 patients undertook CT scan at low kVp with O-MAR with informed consent. The diagnostic satisfaction of clinical images was subjectively assessed. RESULTS Animal experiments showed that the use of O-MAR resulted in accurate CT attenuation, lower AI, better SNR, and higher subjective scores (p < 0.010) at all tube voltages. O-MAR images at 100 kVp had almost the same AI and SNR as non-O-MAR images at 140 kVp. All O-MAR images were scored ≥ 3. In addition, 95% of clinical CT images performed at 100 kVp were considered satisfactory. CONCLUSION O-MAR can effectively reduce orthopedic metal artifacts at different tube voltages, and facilitates low-tube-voltage CT for patients with orthopedic metal implants.
منابع مشابه
Metal Artifact Reduction of Dental Fillings in Head and Neck CT Images
Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...
متن کاملEvaluation of Metal Artifact Reduction software in Computed Tomography
Introduction: The image quality of computed tomography (CT) can be seriously lowered by metal implants of patients. These implants are known to exert a significant impact on diagnostic accuracy due to artifacts. The current study aimed to assess the usefulness of Metal Artifact Reduction (MAR) software in the reduction of metal artifacts, in comparison to iterative rec...
متن کاملThe CT number accuracy of a novel commercial metal artifact reduction algorithm for large orthopedic implants
Philips Healthcare released a novel metal artifact reduction algorithm for large orthopedic implants (O-MAR). Little information was available about its CT number accuracy. Since CT numbers are used for tissue heterogeneity corrections in external beam radiotherapy treatment planning, we performed a phantom study to assess the CT number accuracy of O-MAR. Two situations were simulated: a patien...
متن کاملA New Method for Metal Artifact Reduction in CT Scan Images
Introduction In CT imaging, metallic implants inside the tissues cause metal artifact that reduce the quality of image for diagnosis. In order to reduce the effect of this artifact, a new method with more appropriate results has been presented in this research work. Materials and Methods The presented method comprised of following steps: a) image enhancement and metal areas extraction, b) sinog...
متن کاملCT and MRI Techniques for Imaging Around Orthopedic Hardware.
Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017